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The parallel computational complexity of the quadratic map is studied. A par-
allel algorithm is described that generates typical pseudotrajectories of length t
in a time that scales as log t and increases slowly in the accuracy demanded of
the pseudotrajectory. Long pseudotrajectories are created in parallel by putting
together many short pseudotrajectories; Monte Carlo procedures are used to
eliminate the discontinuities between these short pseudotrajectories and then
suitably randomize the resulting long pseudotrajectory. Numerical simulations
are presented that show the scaling properties of the parallel algorithm. The
existence of the fast parallel algorithm provides a way to formalize the intuitive
notion that chaotic systems do not generate complex histories.

KEY WORDS: Chaotic dynamics; parallel complexity; quadratic map; path
sampling.

1. INTRODUCTION

Chaotic systems cannot be predicted for very long times because of the
exponential divergence of nearby trajectories. Associated with the diver-
gence of trajectories is a lack of history dependence; the current behavior of
the system is not dependent on the past behavior. The absence of history
dependence can be understood in various ways. Here I take a computational
perspective on chaotic systems and analyze trajectories in terms of compu-
tational complexity. If, using a massively parallel computer, a typical long
trajectory can be manufactured in far fewer parallel steps than the actual
length of the trajectory then the trajectory lacks history dependence or
historical complexity. Alternatively, if parallelism does not allow one to
generate a typical trajectory much more quickly than its actual length then
the trajectory displays a complex history dependence.



These considerations are illustrated using the one-dimensional qua-
dratic map,

xn+1=rxn(1−xn) — f(xn) (1)

with xn ¥ [0, 1] and 0 < r < 4. The objective is to produce typical trajec-
tories for the map but since computing devices are necessarily restricted to
finite precision we are really interested in generating typical pseudotrajec-
tories. (1) A pseudotrajectory of accuracy d is a sequence {yn | n=0,..., t}
such that for all n (0 [ n < t),

|yn+1−f(yn)| < d. (2)

We suppose that the parallel computer works to a precision substantially
better than d so that bounds such as given in Eq. (2) can be checked with
reasonable certainty.
For chaotic dynamics with a positive Lyapunov exponent l, a pseu-

dotrajectory and an exact trajectory that are initially equal remain close
only for a time that is roughly given by −(log d)/l. Nonetheless, for small
d a pseudotrajectory will have nearly the same statistical properties as a
real trajectory and, in any case, numerical results about chaotic systems are
learned from pseudotrajectories not real trajectories.
The goal then is to produce a pseudotrajectory chosen from the

uniform distribution over pseudotrajectories. A typical pseudotrajectory of
length t can be generated using one processor in time linear in t by iterating
the map using arithmetic of precision much better than d and then adding a
noise term on each step chosen from the uniform distribution on [−d, d].
Could a typical trajectory be produced in far fewer than t parallel steps
with the aid of many processor?
The model of parallel computation implicit in this question is the

PRAM (parallel random access machine), the standard model in the theory
of parallel computational complexity. (2) A PRAM is an idealized, fully
scalable device with many identical (except for distinct integer labels) pro-
cessors. Processor all run the same program and all communicate with a
global memory in unit time. Massive parallelism is envisioned here however
the number of processors is required to be polynomially bounded in
t log(1/d), the effective number of (binary) degrees of freedom of a pseu-
dotrajectory of length t and accuracy d.
In the next section we show how to produce a typical trajectory in

parallel using Monte Carlo path sampling. The procedure is correct but
inefficient. We then describe how simulated annealing together with path
sampling can produce a typical pseudotrajectory in parallel time that scales
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linearly in log t and polynomially in log(1/d) using a number of processors
that is polynomial in t log(1/d).

2. PATH SAMPLING OF PSEUDOTRAJECTORIES

The method described in this section is based on path sampling ideas
put forward by Chandler and collaborators. (3) The uniform probability
density for pseudotrajectories, P(y0, y1,..., yt) is given by

P(y0, y1,..., yt)=p(y0) D
t

n=1
P(yn | yn−1) (3)

where

P(y −|y)=3
1
2d if |y −−f(y)| < d
0 otherwise

(4)

and p(y) is the invariant distribution.
A simple Monte Carlo procedure can be used to sample paths from P.

Given an existing pseudotrajectory, a single time n > 0 is chosen and a
proposal for a new value for yn is obtained according to

y −n=f(yn−1)+E (5)

where E is chosen from the uniform distribution on [−d, d]. The proposed
value is accepted if it is also the case that |yn+1−f(y

−

n)| < d. It is straight-
foward to verify that this Monte Carlo procedure satisfies detailed balance
with respect to P. The question of ergodicity of the Markov chain in the
space pseudotrajectories is less clear. However, even if ergodicity holds, the
actual mixing time for the Monte Carlo procedure would be long when d is
small since the time to obtain an independent pseudotrajectory is at least as
great as 1/d2, the time to diffuse a distance order one given a step size of d.
To be considered an efficient process for generating pseudotrajectories, the
parallel time should increase no more rapidly than some power of the
logarithm of 1/d. This goal can be achieved by first using a simulated
annealing procedure to produce a pseudotrajectory that is random on long
time scales then to use the above Monte Carlo path sampling to randomize
the small scales.

3. SIMULATED ANNEALING FOR PSEUDOTRAJECTORIES

Long pseudotrajectories are constructed by independently generating
many segments or short trajectories and then ‘‘welding’’ the segments
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together. In the welding step the discontinuity between successive segments
is eliminated by simulated annealing. In addition to simulated annealing, it
is sometimes necessary to extend segments to obtain a weld to the next
segment.
The fundamental time scale in the system is

y=−(log d)/|l|, (6)

the time required for typical errors to grow to be order one. The length of
the segments, K used in the construction should be longer than the fun-
damental time y so that the beginning and end of each segment is uncorre-
lated. We also need to allow for extensions at either end of the segment and
for a ‘‘warm-up’’ so that the initial point of the segment is chosen from the
invariant distribution. Thus, in practice, for each segment we start with a
random number and iterate the map L > K times, choosing the segment of
length K from a predetermined part of the longer sequence of length L.
Having made a collection of segments, we now attempt to weld them

together into a long pseudotrajectory. This is done in such a way that the
initial value or anchor point of each segment is held fixed. The discontinuity
between successive segments is annealed until all errors are less than d.
The Monte Carlo annealing procedure is designed to lower the error
e(yn−1, yn, yn+1) associated with three successive elements, yn−1, yn and
yn+1,

e(yn−1, yn, yn+1)=|yn−f(yn−1)|+|yn+1−f(yn)|. (7)

If e(yn−1, yn, yn+1) < d for every n then we have a pseudotrajectory. For
each time n, with the exception of the anchor points, the Monte Carlo
annealing procedure begins with a measurement of e=e(yn−1, yn, yn+1). If
e < d nothing is done. Otherwise a new value y −n is proposed,

y −n=yn+Ẽ (8)

where Ẽ is chosen as a Gaussian random variable with mean zero and
standard deviation e/2. If e −=e(yn−1, y

−

n, yn+1), is less than e, the proposal
is accepted as the new value for yn. If the error increases, the proposal is
accepted with probability e−b(eŒ−e). The value of the inverse temperature for
each Monte Carlo step is taken to be b=2/e so that the acceptance ratio is
independent of the size of the error. In a single Monte Carlo sweep, all
except the initial and final values of each segment are processed using the
above procedure. Given t/2 processors this can be done in constant paral-
lel time by first processing the even and then the odd values of the time n.
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In the chaotic regime (l > 0) the annealing procedure should yield a
valid pseudotrajectory for large enough K and sufficiently many Monte
Carlo sweeps. In practice, however, some welds require a very large
number of sweeps. Specifically, the probability distribution for the number
of sweeps needed to achieve a weld has a long tail leading to parallel
running times for creating pseudotrajectories that are dominated by the few
most difficult welds. Two additional kinds of steps, called forward shifts
and backward shifts cure this difficulty. Suppose segment s together with its
final condition, the first element of segment s+1, is not fully annealed after
a predetermined number of annealing sweeps. Then segment s is restored to
its original state and either it is extended forward one step or segment s+1
is extended backwards one step. In the case of a backward shift, the
element prepended to segment s+1 is considered a new anchor point and
serves as the new final condition for segment s. The net effect of either a
forward or backward shift is that the discontinuity between segments s and
s+1 occurs with a different pair of numbers. Annealing sweeps and shifts
are interleaved, a fixed number of Monte Carlo annealing sweeps are
attempted and if all errors are not less than d, a shift is done. The process is
repeated until a satisfactory weld is achieved. Successive shifts are alterna-
tely of the forward and backward type. In Section 5, I show that the com-
bination of Monte Carlo annealing and shifts produces a pseudotrajectory
in O(log t) parallel steps.
Shifts serve several purpose. First, they simply provide for the possi-

bility of more Monte Carlo sweeps, though if this were their only function
it could be accomplished by directly increasing the number of sweeps.
Second, shifts permit the algorithm to perform properly for periodic orbits
or nearly periodic stretches of aperiodic orbits. The annealing procedure by
itself cannot generate long pseudotrajectories for periodic orbits since welds
are often attempted between segments that are out of phase with one
another. Adding shifts to the annealing procedure insures that periodic
pseudotrajectories will be correctly generated. For example, consider the
case of a period two orbit, a single forward or backward shift of some
segments will insure that all welds are satisfactory. For period d orbits, as
many as d−1 shifts are necessary to insure that all welds are satisfactory.
Shifts may also provide padding around hard to weld regions of a

trajectory. During a shift, new points are added to one end of a segment
but no points are removed. Thus shifts do not bias the pseudotrajectory
against difficult to weld regions in the invariant measure. For example, it is
observed that if the final condition for a segment is very near the maximum
of the support in the invariant measure at r/4 then one or more backward
shifts are usually necessary so that the point near r/4 is surrounded by a
region of small errors and is not involved in the annealing process.
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4. FULL PARALLEL ALGORITHM FOR PSEUDOTRAJECTORIES

This section provides the details of the parallel algorithm for produc-
ing typical pseudotrajectories that combines the path sampling method of
Section 2 and the annealing procedure of Section 3. First the annealing
procedure is used to generate a pseudotrajectory and then path sampling is
used to further randomize it. The algorithm is controlled by several
parameters: t is the total length of the desired pseudotrajectory, d is the
desired accuracy, K is the length of each segment, K − is the warm-up
length, E, an even number, is the maximum number of shifts that are
attempted,M1 is the number of Monte Carlo annealing sweeps carried out
between shifts and M2 is the number of Monte Carlo path sampling
sweeps. The algorithm is described below:

(1) In parallel, generate S=Kt/KL sequences {x (s)m } each of length
L=K −+K+E, with s=0,..., S−1 and m=0,..., L−1. The initial value of
each sequence is a uniform random number on (0, 1) and subsequent
values are obtained by iterating the map L−1 times to precision much
greater than d. This step requires O(L) parallel time.

(2) These S sequences are used to define ES segments {y(s, q)n } each
of length K, where the index q, 0 [ q < E gives the number of shifts.
y (s, q)n =x sn+E/2+KŒ+Nq/2M for 0 [ n < K−1 while y

(s, q)
K−1=x

s+1
E/2+KŒ− Kq/2L+KŒ. Note

that the final point in segment y (s, q) is taken from sequence s+1.

(3) In parallel, for each s < S, and each q < E, anneal segment y (s, q).
The annealing procedure consists of M1 Monte Carlo sweeps. During a
single annealing sweep first the even and then the odd elements of the
segment are updated in parallel. The initial and final points y (s, q)0 and y (s, q)K−1

are held fixed during the annealing procedure. A single Monte Carlo
update of the point y (s, q)m consists of the following procedure:

• Compute e=e(y (s, q)m−1, y
(s, q)
m , y (s, q)m+1) from Eq. (7).

• If e < d, do nothing. If e > d propose a new value y −=y (s, q)m +Ẽ
where Ẽ is a Gaussian random variable with mean zero and standard
deviation e/2.

• Compute e −=e(y (s, q)m−1, y
−, y (s, q)m+1). If e

− [ e accept the proposed
change, y (s, q)m P y −. If e − > e accept the proposed move with probability
exp[−b(e −−e)] where b=2/e.

The parallel time required for this step is O(M1).

(4) In parallel, for each s < S find Q(s), that smallest value of q such
that the segment is successfully annealed. The annealing is successful for
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this segment if, for all 0 < m < K−1, the errors are sufficiently small,
e(y (s, q)m−1, y

(s, q)
m , y (s, q)m+1) < d. If for any s, annealing is unsuccessful for all

q [ E, the algorithm fails. This step can be carried out in constant parallel
time.

(5) The full pseudotrajectory yg is a concatenation of sequences
obtained from each original sequence x (s). The contribution to the pseudo-
trajectory from x (s) is the concatenation of {x (s)m |E/2+K

−− KQ(s−1)/2L [
m [ E/2+K −+NQ(s)/2M} and {y (s, Q(s))m |0 < m < K−1}. The first of these
sequences is composed of the anchor points and the second sequence is the
annealed segment. To obtain a pseudotrajectory of length exactly t, the
pseudotrajectory obtained above is simply truncated after t steps.

(6) The path sampling Monte Carlo procedure described in Section 2
further randomizes yg

m. During a single sweep, first all the even and then all
the odd elements of the pseudotrajectory are updated in parallel. The
number of sweeps is M2. On each Monte Carlo step a new value for y

g
m is

proposed according to Eq. (5) and accepted only if the trajectory is still a
pseudotrajectory within error d. The randomization step requires parallel
time O(M2).

5. VALIDITY AND COMPLEXITY OF THE PARALLEL ALGORITHM

The central questions addressed in this section are (1) whether the
algorithm succeeds in creating a pseudotrajectory, (2) how the scaling of
the number of parallel steps depends on the length and accuracy of the
pseudotrajectory and the parameter r of the map and (3) whether the algo-
rithm samples the uniform distribution on pseudotrajectories. A sequential
algorithm that carries out the annealing and path sampling routines one
segment at a time was used to study these questions. In the simulations
reported below, the parameters are chosen to be M1=M2=5y2, K=5y
and K −=1000. The assumption behind these choices is that memory is lost
on a time scale y so that placing independently chosen anchor points
separated by K=5y is satisfactory. The annealing process that welds suc-
cessive segments is expected to influence a region whose length is order y.
Since information is transmitted diffusively by local Monte Carlo moves,
having the number of Monte Carlo sweeps scale as y2 should suffice.
The annealing stage of the parallel algorithm can be studied one

segment at a time since each segment is independently annealed. First,
I observed that, given enough shifts, the annealing step always produced a
successful weld. The choice of the maximum number of shifts E for the
annealing stage must be large enough to make the failure probability for
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the whole algorithm small. For long trajectories, t± y, the choice of E
is determined by the tail of the distribution of the number of shifts,
Q required to obtain a weld since the whole procedure fails if even one
segment is not successfully annealed. Suppose C( · ) is the cumulative
probability distribution for Q. An estimate of the maximum number of
shifts, E needed to insure all segments are annealed is given by the relation

(t/K)(1−C(E)) < 1. (9)

Figure 1 shows log10(1−C(Q)) vs. Q. These data were collected for the
case of r=3.7 (the period doubling transition to chaos occurs at
r=3.5699...) and the six curves from left to right are for d=10−5 through
10−10, respectively. Each curve is obtained from annealing 105 segments
except for the d=10−10 curve which is obtained from 6×104 segments. For
r=3.7 the Lyapunov exponent is l=0.354 and so, for example, with
d=10−7, y=45.5, K=228 and M1=10366. Over a reasonable range
following an initial transient and before the noise becomes large, the data
falls on straight lines suggesting that the distribution is asymptotically
exponential, C(Q) ’ 1− exp(−Q/s). Equation (9) then implies that
E ’ s ln t and we can conclude that the parallel running time is O(log t)
since no other contribution to the running time depends on the overall
length of the pseudotrajectory.
How does the decay constant s and thus the running time depend on

the choice of the accuracy d. Figure 2 shows s vs. d on a logarithmic scale
for the case r=3.7 and suggests that s is a polynomial function of log d.
The other simulation parameters, L, M1 and M2 are also polynomial in
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Fig. 1. Logarithm of the complement of the cumulative distribution for the number of
shifts, log10(1−C(Q)) vs. number of shifts, Q. From left to right, d=10−5 to 10−10.
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Fig. 2. Decay constant s for the distribution of shifts vs. accuracy d on a logarithmic scale.

log d so we conclude that the full algorithm has a running time that is
polynomial in log d and linear in log t.
I also considered two other parameter values for the quadratic map,

r=3.6 where l=0.183 and r=3.95 where l=0.577. In both cases, the
accuracy was set to d=10−7. The decay of (1−C(Q)) appears to be expo-
nential in both cases but with rather different values of the decay constant:
s=450, 15 and 9.5 for r=3.6, 3.7 and 3.95, respectively. Either s depends
strongly on l or perhaps there are additional r dependent factors control-
ling s. For example, for r=3.7 and 3.8 the invariant measure has support
on a single interval but for r=3.6 the support consists of two intervals.
The annealing stage of the algorithm creates a pseudotrajectory but it

is not typical in the sense of being chosen from the distribution of Eq. (3).
On long time scales, the pseudotrajectory is randomized by the random
choice of initial conditions for each sequence. However, the individual
errors, En=y

g
n+1−f(y

g
n ) are not guaranteed to be independent random

variables on the interval [−d, d]. For example, anchor regions of the
pseudotrajectory have errors much less than d. The hypothesis is that
M2=O(y2) path sampling Monte Carlo sweeps are sufficient to randomize
the short time scales and produce a typical pseudotrajectory from the
pseudotrajectory produced by the annealing stage. To check this hypoth-
esis, I computed mean values and autocorrelation functions for errors and
cross correlations between errors and values of the pseudotrajectory. The
quantities OEnP, (OE

2
nP−d

2/3), OEn+1EnP, OEn+1 y
g
nP and (OE

2
n+1E

2
nP−d

4/9)
were all found to be zero within error bars for the case r=3.7 and
d=10−7. Here the angled brackets indicate an average over segments and
over n. The vanishing of these quantities is a necessary but not sufficient
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condition that pseudotrajectory is chosen from the uniform distribution
described by Eqs. (3) and (4). More work is needed to firmly establish that
the algorithm with O(y2) path sampling sweeps samples the uniform dis-
tribution to good approximation. However, even without the path sampl-
ing stage, the pseudotrajectories produced by the annealing stage are
typical in a different sense. As shown in ref. 1, any pseudotrajectory
shadows an exact trajectory (i.e., remains close to over its entire length)
though possibly for a larger value of r.

6. CONCLUSIONS

I have exhibited a parallel algorithm that generates pseudotrajectories
of the quadratic map. Numerical evidence suggests that the parallel time
required to generate a typical pseudotrajectory increases linearly in log t
and polynomially in log(1/d) though more work would be required to
establish these scalings with certainty. Essentially the same parallel algo-
rithm can be applied to other one-dimensional and higher dimensional
maps. It would be interesting to explore whether the annealing/shift
procedure is sufficient to efficiently sample pseudotrajectories for other
maps.
Since there is little demand for very long pseudotrajectories of the

quadratic map, the fast parallel algorithm is probably not of practical
value. The significance of its existence and complexity is that it charac-
terizes the history dependence of the map. The existence of a fast parallel
simulation is a strong statement against history dependence since it shows
that the logical path from independent random numbers (used to drive the
Monte Carlo procedures) to a typical pseudotrajectory is much shorter
than the length of the pseudotrajectory. The length of this logical path is
one measure of the potential for generating historical complexity. In very
few logical steps, very little complexity can arise. The idea that complexity
tends to emerge at the ‘‘edge of chaos’’ (4) is born out here since the basic
time scale y for the parallel algorithm diverges when the Lyapunov expo-
nent vanishes. An appealing feature of characterizing systems by computa-
tional complexity is that very different systems in statistical physics
systems, for example diffusion limited aggregation, (5) sandpiles (6) or the
Bak-Sneppen model, (7) can be compared to one another within the same
framework.
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